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Abstract

While heredity is predominantly controlled by what deoxyribonucleic acid (DNA)

sequences are passed from parents to their offspring, a small but growing number

of traits have been shown to be regulated in part by the non-genetic inheritance of

information. Transgenerational epigenetic inheritance is defined as heritable infor-

mation passed from parents to their offspring without changing the DNA sequence.

Work of the past seven decades has transitioned what was previously viewed as rare

phenomenology, into well-established paradigms by which numerous traits can be

modulated. For themost part, studies inmodel organismshave correlated transgenera-

tional epigenetic inheritancephenotypeswith changes in epigeneticmodifications. The

next steps for this field will entail transitioning from correlative studies to causal ones.

Here, we delineate themajormolecules that have been implicated in transgenerational

epigenetic inheritance in both mammalian and non-mammalian models, speculate on

additional molecules that could be involved, and highlight some of the tools which

might help transition this field from correlation to causation.
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INTRODUCTION

Traits such as lifespan, metabolism, and morphology have been shown

to be regulated in part by the inheritance of non-genetic informa-

tion.Non-genetic informationbeing transmitted for a single generation

is termed intergenerational epigenetic inheritance while non-genetic

information which is transmitted for multiple generations is termed

transgenerational epigenetic inheritance.[1,2] In the case of transgen-

erational epigenetic inheritance, none of the genetic material of the

descendants was present or exposed to the initiating environmental

or genetic signal. To date, much of the examination of these heritable

phenotypes has correlated changes in potential epigenetic molecules

including histone modifications, DNA methylation, small RNA (sRNA)

inheritance, prions or microbiota with transgenerational epigenetic

inheritance phenotypes.[3,4] The preponderance of work examining

the molecular mechanisms of epigenetic inheritance has been done

in yeast, Caenorhabditis elegans and Drosophila melanogaster; however,

an increasing number of studies are beginning to be performed in

mammalian species. Each of the putative epigenetic carriers on non-

genetic information do not usually function in isolation and tend to

have crosstalk with other pathways in regulating gene expression.[5]

Therefore, identification of critical initiating factors is confounded by

theunderstanding that there is a reinforcement byother factors during

transmission between parent and progeny. Here, we will briefly sum-

marize a small portion of the work on epigenetic inheritance that has

been validated in independent laboratories and different species, the

established epigenetic factors, before discussing some of the emerg-

ing epigenetic factors that are just beginning to be examined. These

“established” epigenetic factors need to be further examined mecha-

nistically to determine whether they are causal for the inheritance of

non-genetic phenotypes or if they are passenger epigenetic cues that

contribute to amplifications of non-genetic signals.
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Histone modifications

DNA is wrapped around nucleosomes which facilitates compaction

and packaging of the entire genome within the nucleus.[6,7] The level

of chromatin compaction affects accessibility for the transcription

machinery to turn on gene expression. Histones possess extruding tails

that can be post-translationallymodifiedwith specific chemicalmodifi-

cations, affecting the level of DNA compaction and serving as markers

for gene regulation.[8] There have been numerous studies supporting

histone modifications as pivotal for epigenetic inheritance of a variety

of phenotypes. In C. elegans, mutation of a histone H3 lysine 4 (H3K4)

trimethylation complex can extend lifespan in a transgenerational

manner.[9,10] Mutation of an H3K4me1/me2 demethyltransferase also

induces a progressive fertility decline and a transgenerational lifes-

pan extension.[11,12] Histone modifications, particularly H3K27me3,

have been demonstrated to serve as an imprinting marker indepen-

dent of DNA methylation in mammals.[13] Work in C. elegans and

D. melanogaster has also suggested H3K27me3 itself is transmitted

across generations.[14–16] Histone modification changes can be trig-

gered by environmental conditions that persist in several generations.

In a study examining the effect of heat stress in C. elegans, it was

revealed that a decrease of H3K9me3 is required for perpetuating

the increased levels of a repetitive transgenic array expressing heat-

shock response protein, and that this memory can be transmitted

through multiple generations.[17] Earlier studies have reported that

silencing of repetitive transgenic arrays in C. elegans germline is stable

and epigenetically inherited due to the maintenance of the chromatin

state.[18,19] Similarly, in D. melanogaster high-sugar and high-fat diets

affect heritable obesity and cardiac function correlating with changes

in H3K27me3.[20,21] These examples highlight how changing levels

of histone modifications can correlate with transgenerational pheno-

types, and howmanipulation of the enzymes responsible for regulating

histonemodifications are necessary for transgenerational phenotypes.

However, it remains to be seen whether changes in histone modi-

fications are the transmissible signal and therefore responsible for

regulating transgenerational phenotypes, or whether they are simply

an integral component of an epigenetic amplification cascade.

Although there have been many studies pointing at histone mod-

ifications as a key epigenetic factor, mechanistic insight into how

histones bearing specific modifications are passed on to preserve the

gene regulatory state at specific genomic regions is still being elu-

cidated. This is in part due to the DNA replication process, where

the original nucleosomes have to be split between the parental and

new cells.[22] Since modified histones are sometimes retained through

cell divisions and the H3K27 methylation complex can be retained on

chromatin through DNA replication, this provides a plausible mech-

anism by which epigenetic information could be transmitted across

generations[23–25] (Figure 1A). Future workwill be required to identify

molecular mechanisms by which histone modifications can respond to

environmental changes known to induce epigenetic inheritance, and to

determine how prevalent the transmission of these altered histones is

for the perpetuation of epigenetic phenotypes. A deeper understand-

ing of how histone modifications are interpreted and reinforced by

other epigenetic pathways,will determinewhether the communication

between histonemodifications and other epigenetic factors, or the his-

tonemodifications themselves are the essential carriers of non-genetic

information.

DNA methylation

Chemical modification of nucleic acids, such as DNA methylation,[26]

present another option for transmitting epigenetic information across

generations. In eukaryotic systems, DNA methylation is present pri-

marily on the C5 position of cytosines (5mC) and can occur in the CG,

CHGandCHHsequence context (H=A/T/G).[27] DNAmethylation can

affect the chromatin state by acting as a marker recruiting gene silenc-

ing machineries, that deposits other repressive modifications such as

H3K9me2, leading to the entire chromatin region becoming highly

compact and inaccessible for transcription.[28] As an epigenetic factor,

DNA methylation has been one of the most well studied transmissi-

ble marks. This is due to the fact that DNA maintenance pathways,

where DNA methyltransferases such as DNMT1/MET1, immediately

depositDNAmethylation on the nascent daughter strands duringDNA

replication, preserving epigenetic memory without discontinuity[29,30]

(Figure 1B). This is evident in plant systems where DNA methylation

remains present in the egg cell during the fertilization process and

embryonic development.[31] Hence, this allows the formation of sta-

ble epialleles which can persist through many generations in plants.

Amongst the epialleles, the most well-known is the paramutation

affecting maize pigmentation, where the mutant epiallele B’, is able to

convert wildtypemaize upon crossing into themutant phenotype, per-

sisting through future generations.[32,33] DNAmethylation represents

one of the most parsimonious methods of how epigenetic information

can be directly transmissible, as DNA itself needs to be perpetuated

and DNA methylation maintenance pathways function during DNA

replication.

In mammals however, global reprogramming and erasure of DNA

methylation at the primordial and early embryo stages has made it

more difficult to rationalize the role of DNA methylation as a trans-

generational epigenetic mark in animals.[34] Interestingly, mechanisms

such as genomic imprinting via DNA methylation is commonly uti-

lized to carry paternal or maternal epigenetic memory inmammals.[35]

This has been studied in the agouti mice model, where the Avy alle-

les become methylated by maternal imprinting which causes the

progeny to express light yellow fur instead of dark brown.[2] When

progeny is generated from yellow furred mice, the litter will con-

tain a range of fur colors even though they are isogenic. There are

also other regions in the genome in mammals which escape the

global reprogramming demethylation step, making it comparable to

epialleles present in plants.[36] It is still not understood how some

of these regions can escape reprogramming but DNA methylation

seems to be a robust transgenerational epigenetic factor in sys-

tems that possess it. Beyond 5mC there are other DNA methylation

events, such as N6-methyladenosine[37] and N4-methylcytosine[38]

and other modifications to DNA, including N4-acetylcytosine[39] and
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F IGURE 1 Types of epigenetic factors &mechanisms. (A) Histonemodifications could be transmitted through cell division and generations by
multiple methods. Non-coding RNAs can direct methylation to specific genomic locations, completemethylated histones could segregate
alternatively to each daughter strand and a neighboringmodified histone could inform the reacquisition of modifications on the newly
incorporated histone, DNAmethylation can direct methylation of histones (and vice versa), histonemethyltransferases can exist at the replication
fork to immediately methylate newly incorporated histones, or pre-modified histones could be incorporated during replication. None of these
methods aremutually exclusive. (B) DNAmethylation has been shown to be retained through DNA replication through the actions of the
maintenance DNAmethyltransferase, DNMT1. (C) Various non-coding RNAs have been suggested or demonstrated to be inherited across
generations, however, how these non-coding RNAs are stabilized sufficiently to persist across generations is still unknown. RNAs could be
stabilized through incorporation into protein complexes or vesicles to protect them from degradation. (D) Lipids are putative carriers of
non-genetic information that could be transmitted through the yolk, newly synthesizedmembranes, or signaling lipids such as eicosanoids.
Transmitted lipids could be used to directly modify protein function or to confer altered chromatin modifications.

5-hydoxymethyluracil,[40] which could each play a role in transmitting

non-genetic information across generations. Having a deeper mech-

anistic understanding of these additional modifications could help

reveal whether these rarer DNAmodifications could play a role specif-

ically in the inheritance of non-genetic information. Future studies are

required to differentiate what makes some DNA modifications imper-

vious to the epigenetic erasure that occurs upon fertilization, while

others are readily removed. Comprehensive understanding of the

underlying mechanisms behind this selectivity would allow potential

therapies or treatments for a wide variety of imprinting disorders.

Non-coding RNAs

Small RNAs are comprised of non-coding RNA which are 18–

30 nucleotides (nt) and are involved in transcriptional and post-

transcriptional gene silencing pathways.[41] In plants and mammals,

transcriptional gene silencing pathways utilize short interfering RNA

(siRNA) and long non-coding RNA (lncRNA) to target genomic regions

with DNAmethylation for silencing transposable elements (TEs).[42,43]

This then feeds into DNA methylation pathways which will main-

tain silencing in a transgenerational manner. In fungi and worms,

non-coding RNA-induced silencing is reinforced by the repressive

chromatin modification H3K9me3.[44] In animals, there is a germline-

specific RNA-based system known as the PIWI-interacting small RNAs

(piRNAs) system that also functions to silence target regions com-

plementary to the piRNA sequences.[45,46] In the piRNA system, this

can occur through chromatin changes induced by sRNA or herita-

ble silencing by RNAi through secondary siRNAs. It is thought that

RNA-induced epigenetic silencing function more towards responding

to immediate environmental stress or changes, which allows faster

reversal of epigenetic states once conditions improve or return to
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normal.[44] For example, C. elegans that possess a repetitive trans-

genic array carrying part of the Flock House virus (FHV) genome, can

generate siRNA which leads to heritable silencing of viral genomes

present in the animal for several generations.[47] It is worth noting

that a study using only natural C. elegans virus did not show vertical

transmission of sRNAs.[48] Starvation can also induce an increase in

longevity, lower fertility and an increased resistance to stress, which

sets the worms into an epigenetic state, preparing them and future

generations for increased survivability in low food conditions through

heritable sRNAs.[1] sRNA can be transmitted from the paternal or

maternal side to induce heritable silencing.[49] These examples high-

light howsRNAcanplay a crucial role in regulating gene expression and

are easily transmissible from parent to child due to their trans-acting

characteristics.

Although there have been many examples of sRNA-mediated epi-

genetic inheritance in C. elegans, other organisms which do not have

RNA-dependent RNA polymerases (RdRP), do not seem to exhibit

a similar repertoire for inheriting various stress induced responses.

Mammals who lack RdRPs, for instance, seem to depend more on

chromatin modifications for creating stable epialleles and even then,

global reprogramming in early embryonic development resets most

of the epigenetic marks.[34] However, mammalian systems do have

other small RNAs which have been found to be present in repro-

ductive tissues, such as tRNA derived small RNA fragments.[50,51]

Recent studies which utilized new techniques such as Ordered Two-

Template Relay (OTTR) and panoramic RNA display by overcoming

RNA modification aborted sequencing (PANDORA-seq), have uncov-

ered a large number of novel small RNA fragments which appear to

show tissue-specific expression as well as cell-specific expression in

mammalian cells.[52,53] Long non-coding RNAs have also been pro-

posed as carriers of epigenetic information. Studies examining the

role of lncRNA in sperm-dependent epigenetic phenotypes, through

either exposure to maternal stress or injection of toxic chemicals

such as vinclozolin in the parental generation, showed strong cor-

relation between the changes in lncRNA transcripts with chromatin

modifications in the following generations.[54,55] As the mechanisms

of non-coding RNA inheritance are further elucidated it will be

important to decipher if non-coding RNAs are themselves specifi-

cally transmitted via vacuoles or if the epigenetic signal is transmit-

ted via subsequent secondary epigenetic cues (such as chromatin

modifications) which then allow for a reestablishment and perpet-

uation of the non-coding RNA signal. Further studies focused on

the role of non-coding RNAs in transgenerational epigenetic inher-

itance remains important due to its prevalent presence in most

animals and plants, which will likely reveal mechanistic insights that

are either fully or partially conserved between different organisms.

This in turn, could potentially open further avenues for RNA-based

therapies or agricultural innovations, which could function in a trans-

generational manner. Because of the inherently unstable nature of

RNA, future studies will need to determine how non-coding RNAs

can be protected to transmit non-genetic information across gener-

ations (Figure 1C). It will also be interesting to determine whether

specific non-coding RNAs are sufficient to elicit transgenerational

phenotypes.

Emerging epigenetic factors

While chromatin modifications and small RNAs are some of the

most extensively studied putative carriers of non-genetic information,

almost any molecule present in the zygote, which is not the DNA

itself, could be a carrier of epigenetic information across generations.

Here, we catalogue some of the evidence for less well studied epige-

netic factors, which have promise as putative carriers of non-genetic

information across generations.

Ribosome modifications

The ribosome is composed of four ribosomal RNAs (rRNA), the

28S, 18S, 5.8S and 5S, and over 80 ribosomal proteins that form

a complex essential for protein synthesis.[56] Recent studies have

demonstrated that changes in which ribosomal proteins[57–59] or

chemical modifications to the rRNAs[60–62] are integrated into the

ribosome, helps to specify which transcripts are translated to regu-

late a variety of processes such as environmental stress, lifespan and

development.[60,61,63] During fertilization, the bulk of ribosomes and

proteins are transmitted from the maternal lineage, while the paternal

sidemostly contributesDNAand transfer RNA (tRNA) cargo.[51,64] It is

likely that if rRNAmodifications are involved in epigenetic inheritance,

that it is passed on through the maternal side. These initial ribosomes

are required for early translation events before the new organism

generates its own ribosomes.[65] rRNAs have a half-life of 1–7 days

under basal conditions and this could potentially be altered by local-

izing to specialized compartments or through modifications, raising

the possibility for prolonged persistence of these non-genetic signals.

Interestingly, the composition of the ribosome can change in response

to environmental stress, for example, yeast increase monomethyla-

tion at the N6 position (m6A) and decrease N6-dimethylation (m6,2A)

of adenosines 1781 and 1782 in the 18S rRNA, in response to sulfur

starvation.[62] These changes in rRNAmodifications lead todifferential

translation, likely due to alterations in ribosome conformation, which

causespreferential binding to specificmRNAtranscripts.[62] This is one

example, amongst several where rRNAmodifications have been shown

to play an important role in regulating translational activity through

ribosome heterogeneity.

Our group has found, through metabolic methyl labeling experi-

ments, that in response to starvation there is a heritable increase in

m6,2A on the 18S rRNA in C. elegans[66] (Figure 1C). Starvation induces

a hormesis responsewith increased heat resistance and a subtle exten-

sion in lifespan associated with a decrease in reproduction, in not only

the generation that is starved, but also in their naïve well fed chil-

dren and grandchildren.[66] We identified the enzymes responsible

for N6-dimethylating adenosines on the 18S rRNA in C. elegans, and
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found that deletion of these enzymes eliminated the transmission of

hormesis phenotypes in response to parental starvation.[66] Based on

these findings, it suggests that rRNA become modified in response to

external stresses, to presumably alter which proteins are translated

to increase survival in stressful conditions. These modified rRNAs are

then transmitted to the next generation to alert subsequent gener-

ations that conditions might not be optimal, and the children should

also alter which proteins are translated to prepare for that stressed

environment.[66] By performing an unbiased metabolic methyl label-

ing experiment, we were able to track epigenetic material transmitted

from parents to their children, and identify critical components neces-

sary formaintaining an epigeneticmemory. Our approach has revealed

an unprecedented role for specific rRNAmodifications in transmitting

transgenerational epigenetic traits in response to parental starvation,

which raises the question as to whether other rRNA modifications

could be involved in transmitting non-genetic information in differ-

ent paradigms. We feel that this labeling and tracking of non-genetic

information provides a critical tool in assessing, in an unbiasedmanner,

what non-genetic information is transmitted directly from parents to

children through rRNAmodifications or other molecules.

Lipids

In many animals, eggs can form yolk which is a high source of lipids and

lipoproteins, and is a source of energy for the developing embryo.[67,68]

This can also potentially provide a source for epigenetic signals to

be passed on through specifically modified lipids (Figure 1D). Lipids

are essential components of all membranes and vesicles[69,70] and

are also utilized as signaling molecules within and between cells.[71]

The ubiquitous presence of lipids make lipids attractive candidates

for transmitting epigenetic information between parents and their

offspring.[72] For instance, membrane fusion that occurs during mam-

malian fertilization could be oneway that epigenetic information could

be passed on either paternally or maternally.[73] In a recent study, it

was shown that lipid metabolism is required for the transgenerational

epigenetic inheritance of C. elegans behavioral response to exposure

to a pathogenic bacteria Pseudomonas aeruginosa.[74] The investigators

showed that worms which have been trained to avoid P. aeruginosa

throughexposure to thepathogen, have increased levels ofH3K27me3

and decreases in H3K27 acetylation (H3K27ac) in comparison to naïve

worms. These changes in chromatin marks were shown to be depen-

dent on the activity of pod-2, which is an acetyl-coA carboxylase, and

on vitellogenins, which are a family of yolk proteins. The combina-

tion of pod-2 and vitellogenins help to establish H3K27me3 in specific

genomic regions in the parental generation, and thesemodified histone

patterns are subsequently passed on to their progeny.[74] Lipids rep-

resent an exciting new potential carrier of epigenetic information, as

they can play an important role in regulating histone modifications to

control gene expression for epigenetic traits.

In addition, lipids, similarly tonucleic acids andproteins, canbemod-

ified by the addition of chemical groups, which presents an additional

layer of regulation that can potentially retain epigeneticmemory.[75,76]

Lipids can also modify proteins to regulate protein function.[77] For

example, myristoylation of ciliopathy protein nephrocystin-3 (NPHP3)

is required for targeting ciliary proteins to the primary cilium in C.

elegans.[78] N-palmitoylation, is another lipid modification present on

the Hedgehog protein, which is a morphogen active during embry-

onic development.[79] These properties of lipids to modulate biolog-

ical activity of proteins, especially in early life, presents a potential

opportunity for transmitting transgenerational inheritance to future

generations in an epigenetic manner. As lipids are omnipresent in

our food and pharmaceutical products, further studies are needed

to determine if lipids play a larger role in facilitating transgenera-

tional epigenetic inheritance, which could potentially have unforeseen

effects in individuals as well as their future progenies.

CONCLUSIONS

Transgenerational epigenetic inheritance has been a phenomenon

shrouded in mystery from its inception and there is still a lot that

we do not fully understand. Even though epigenetic phenotypes can

often be robustly observed through several generations, the epigenetic

markers and factors tend to be obscure. This problem is confounded

by the cross-talk and reinforcing nature of how epigenetic cues can

induce other epigenetic modifications or molecules. Unlike a DNA

sequence where discrepancies are immediately identified and linked

to a phenotype, there are usually multiple layers or series of inter-

acting components, which ultimately allow the passage of epigenetic

memory between parent and offspring (Figure 1). Hence, amajor focus

for the field is to develop new techniques and approaches for iden-

tifying and tracking molecules, which are heritable and required for

the epigenetic phenotype. Recently, a study investigating how C. ele-

gans learns and acquires the ability to avoid pathogenic P. aeruginosa,

discovered that the worms achieved this through exposure to the

pathogen’s small RNA (sRNAs) [80]. The authors demonstrated that

specific sRNAs were necessary and sufficient to induce an epigenetic

memory of the pathogenic bacteria [80]. Other groups have also uti-

lized histone labeling methods to track the transmission of specific

histonemodifications fromparent to offspring [81–83]. Through a series

of genetic tricks, histone modifications present in sperm were shown

to be passed on to the next generation, affecting the transcriptomic

profile and development of the progeny [81,82]. Our ownwork perform-

ing a metabolic methyl labeling technique across generations allowed

us to identify, in an unbiased manner, which methylation events were

transmitted from parents to their children, in response to parental

starvation [66] (Figure 2). These types of approaches shift the focus

in the field from correlation to causation, where we can directly track

and monitor the passage of epigenetic information from parent to

child. By pursuing unbiased labeling and tracking experiments, the field

can identify previously unappreciated epigenetic molecules and can

reveal previously undiscovered mechanisms due to discontinuous cor-

relative observations betweengenerations. Coupling unbiased labeling
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F IGURE 2 Tracking heritable methylation across generations. Methods which label and track non-genetic material across generations will be
useful for identifying in an unbiasedmanner what epigenetic cues are physically transmitted and could be causal for epigenetic inheritance. As an
example, we illustrate howmetabolic methyl labeling is performed by feeding amodifiedmethyl donor (Redmethyl group represents deuterated
or tritiatedmethyl) in the parental generation which will label anymethylated substrate (shown in top box on right), specifically heritably
methylated cues (shown in bottom box on right) will be detected in the subsequent generation through detection of themodifiedmethyl group. To
determine whether heritable methylatedmolecules change in response to an environmental treatment that is known to induce epigenetic
inheritance, environmental manipulations can bemade in the parental generation.

methodswith directedmanipulations to determinewhether epigenetic

cues are both necessary and sufficient, will help expand the mech-

anistic understanding of transgenerational epigenetic inheritance.

Presently, there are still large gaps in ourmechanistic understanding of

existing epigenetic factors as well as those that still remain to be iden-

tified in the future, leaving the field at an exciting stage of discovery.
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