
Overall, the innovative approach of

combining SEC data with cysteine-

directed ABPP has opened up new possi-

bilities for identifying chemical probes

that can perturb protein complexes in hu-

man cells. Not only have they successfully

targeted historically undruggable protein

classes, but the potential for scaling up

this approach to profile larger electro-

philic compound libraries (e.g., DOS-con-

structed libraries) is enormous and has

broad implications in chemical biology

and drug discovery.
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In this issue of Molecular Cell, Yang and colleagues1 discover age-dependent increases in broad regions of
the repressive histone modification H3K27me3. They also demonstrate partial reversion to younger
H3K27me3 patterns and gene expression upon resection of older livers.
Chromatin modifications are essential for

maintaining cellular identity. Accordingly,

as organisms and tissues lose cellular

identity with age, there is accompanying

global chromatin modification dysregula-

tion across species and cell types.2

However, the specific chromatin modifi-

cations that change, the magnitude and

directionality of these changes, and the

precise genomic loci affected have

proven to be highly context- and cell-

type-specific. While a long-standing the-

ory postulates that aging is characterized

by a loss of repressive chromatin modifi-
1546 Molecular Cell 83, May 18, 2023 ª 202
cations that results in spurious transcrip-

tional upregulation in aged cells,3 the

universality of this theory has been

challenged by conflicting findings in

different tissues and organisms. In Cae-

norhabditis elegans, there is an age-

dependent decrease in the repressive

histone methylation mark H3K27me3.4,5

Similarly, heterochromatin decreases

with age in cells from older people6 or

in cells from patients with the prema-

ture aging disease Hutchinson-Gilford

progeria syndrome. On the other hand,

global levels of H3K27me3 increase
3 Elsevier Inc.
with age in muscle stem cells of old

mice7 and in the skeletal muscle of

African Killifish.8 The effects of manipu-

lating the enzymes that deposit these

histone modifications for lifespan and

aging phenotypes are similarly complex.

Reducing expression of the H3K27me3

demethylase UTX-1 increases lifespan

in C. elegans,4,9 while decreasing expres-

sion of MES-2, the putative H3K27me3

trimethylase, also extends the lifespan of

sterile C. elegans.5

In order to gain greater clarity on

chromatin changes in aging, Yang
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Figure 1. H3K27me3 and gene expression revert to more youthful state in mouse livers upon regrowth in response to resection
LC-MS/MS of young liver (12 weeks) and old liver (72 weeks) revealed a global increase in H3K27me3 and decrease in H3K9me3.1 The elevated H3K27me3
was further confirmed by ChIP-seq and RNA-seq (left panel). Resection of mouse livers revealed that while young mouse livers regenerated more rapidly, old
mouse livers upon regeneration reverted to a more youthful expression of genes and H3K27me3 pattern1 (right panels). This figure was created using
Biorender.com.
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et al. performed an unbiased assess-

ment of histone modifications by quanti-

tative mass spectrometry in young and

aged mouse livers. The authors found

elevated repressive histone post-trans-

lational modifications, most notably

H3K27me3, in the aged mouse liver. A

more detailed age gradient found that

H3K27me3 increased directly after the

optimal reproductive age (�11 months

in mice) and remained elevated for the

remainder of the lifespan in mice livers.

Importantly, the authors corroborate

these mass spectrometry measures by

orthogonal methods, including western

blot and immunofluorescence. By per-

forming H3K27me3 chromatin immuno-

precipitation followed by sequencing

(ChIP-seq) using spike in normaliza-

tions, the authors discovered several

striking changes with aging, including a

loss of locus-specific H3K27me3 at the

promoters of individual genes and an in-

crease in megabase scale regions of

H3K27me3 across gene-poor regions

(termed ‘‘age-domains’’). H3K27me3

age-domains could also be identified in

aged kidney, heart, and muscle tissues.
The authors complement these genomic

assays by a set of biochemical fraction-

ations and single molecule atomic force

microscopy, which together demon-

strate that samples from older animals

have larger and more compact chro-

matin arrays. The consequences of

these changes in chromatin structure

on gene transcription was several fold,

including de-repression of specific

genes encoding neuronal and cardiac

lineage regulators in liver and a global

suppression of gene transcription.

Among the more intriguing aspects of

this study, the authors took advantage of

the regenerative nature of the liver to ask

whether regeneration of aged livers re-

verses aspects of age-dependent chro-

matin changes. Notably, while older

mice livers were slower to regenerate

than younger mice livers, the authors

discovered that the chromatin and tran-

scriptional landscapes of older livers

post-resection were more similar to

younger livers than pre-resection (Figure

1). This result highlights the potential of

regeneration to reverse aging states in

specific tissues. Indeed, it would be inter-
esting to determine whether these

regenerative H3K27me3 domains are

conserved in highly regenerative species,

such as zebrafish, axolotl, or starfish.

Many groups now have identified

detailed maps of chromatin changes that

occur with aging.2 The study by Yang

et al. significantly adds to this body of

work and raises interesting future ques-

tions about the regulation and conserva-

tion of chromatin changes during aging.

Are conserved ‘‘age-domains’’ less likely

to show changes in species with similar

genomes but significantly longer lifespans

and slower aging clocks than mice, such

as the naked mole rat or bats? How do

these ‘‘age-domains’’ behave in more

divergent species such as the jellyfish

(Turritopsis dohrnii) or the fresh-water

polyp (Hydra vulgaris), which have been

purported not to age, or in populations

of supercentenarian humans? Compara-

tive species analyses could point to truly

conserved mechanisms of regulation

rather than passenger changes that ac-

company aging.

Due to the global dysregulation of

chromatin modifications with age,
Molecular Cell 83, May 18, 2023 1547
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reversing age-induced chromatin modi-

fications present attractive targets for

combating age-dependent diseases.

However, questions remain about

whether inducing specific chromatin

modifications at precise gene loci can

be implemented without affecting other

essential properties of cellular identity

or stimulating cancer. Bridging the gap

between genome-wide analyses of

chromatin structure and gene expres-

sion and the role of individual genes

that are critical for regulating aging is

clearly a remaining challenge for the

coming years. The regenerative liver

provides a powerful system for perform-

ing directed manipulations of chromatin

and examining the functional conse-

quences. Utilizing nuclease null Cas9

fused with H3K27 methyltransferases10

or demethylases at critical loci will

help transform the field from correlative

observations toward critical causal

occurrences.
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